ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions.

نویسندگان

  • Christiane Seiler
  • Vokkaliga Thammegowda Harshavardhan
  • Kalladan Rajesh
  • Palakolanu Sudhakar Reddy
  • Marc Strickert
  • Hardy Rolletschek
  • Uwe Scholz
  • Ulrich Wobus
  • Nese Sreenivasulu
چکیده

Drought is one of the most severe environmental stress factors limiting crop yield especially when occurring during anthesis and seed filling. This terminal drought is characterized by an excess production of the phytohormone abscisic acid (ABA) which plays an important role during seed development and dormancy. All the genes putatively involved in ABA biosynthesis and inactivation in barley were identified and their expression studied during plant ontogeny under standard and drought-stress conditions to learn more about ABA homeostasis and the possible mode of cross-talk between source and sink tissues. Out of 41 genes related to ABA biosynthesis and inactivation 19 were found to be differentially regulated under drought stress in both flag leaves and developing seed during seed filling. Transcripts of plastid-located enzymes are regulated similarly in flag leaf and seed under terminal drought whereas transcripts of cytosolic enzymes are differentially regulated in the two tissues. Detailed information on the expression of defined gene family members is supplemented by measurements of ABA and its degradation and conjugation products, respectively. Under drought stress, flag leaves in particular contain high concentrations of both ABA and the ABA degradation products phaseic acid (PA) and diphaseic acid (DPA); whereas, in seeds, besides ABA, DPA was mainly found. The measurements also revealed a positive correlation between ABA level and starch content in developing seeds for the following reasons: (i) genes of the ABA controlled SnRK2.6 and RCAR/PP2C-mediated signal transduction pathway to the ABF transcription factor HvABI5 are activated in the developing grain under drought, (ii) novel ABA- and dehydration-responsive cis-elements have been found in the promoters of key genes of starch biosynthesis (HvSUS1, HvAGP-L1) and degradation (HvBAM1) and these transcripts/activity are prominently induced in developing seeds during 12 and 16 DAF, (iii) spraying of fluridone (an ABA biosynthesis inhibitor) to drought-stressed plants results in severely impaired starch content and thousand grain weight of mature seeds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley

Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-indu...

متن کامل

Use of Physiological Parameters for Screening Drought Tolerant Barley Genotypes

With the aim of understanding and identifying the traits which can be used as the suitable criteria for quick screening of the water deficit tolerant barley genotypes, an experiment based on randomized complete blocks design with three replications was conducted during two years to evaluate the biochemical responses of 20 barley genotypes to full irrigation and terminal water stress in the fie...

متن کامل

Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis.

The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. The Arabidopsis sad1 (supersensitive to ABA and drought) mutation increases plant sensitivity to drought stress and ABA in seed germination, root growth, and the expression of some stress-responsive genes. sad1 plants are also defective in the positive feedback regulation of ABA biosynthesis...

متن کامل

Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress.

Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by ma...

متن کامل

Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals.

Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 62 8  شماره 

صفحات  -

تاریخ انتشار 2011